Extensions 1→N→G→Q→1 with N=C32 and Q=C32

Direct product G=N×Q with N=C32 and Q=C32
dρLabelID
C3481C3^481,15

Semidirect products G=N:Q with N=C32 and Q=C32
extensionφ:Q→Aut NdρLabelID
C32⋊C32 = C3×He3φ: C32/C3C3 ⊆ Aut C3227C3^2:C3^281,12

Non-split extensions G=N.Q with N=C32 and Q=C32
extensionφ:Q→Aut NdρLabelID
C32.1C32 = C3≀C3φ: C32/C3C3 ⊆ Aut C3293C3^2.1C3^281,7
C32.2C32 = He3.C3φ: C32/C3C3 ⊆ Aut C32273C3^2.2C3^281,8
C32.3C32 = He3⋊C3φ: C32/C3C3 ⊆ Aut C32273C3^2.3C3^281,9
C32.4C32 = C3.He3φ: C32/C3C3 ⊆ Aut C32273C3^2.4C3^281,10
C32.5C32 = C9○He3φ: C32/C3C3 ⊆ Aut C32273C3^2.5C3^281,14
C32.6C32 = C32⋊C9central extension (φ=1)27C3^2.6C3^281,3
C32.7C32 = C9⋊C9central extension (φ=1)81C3^2.7C3^281,4
C32.8C32 = C3×3- 1+2central extension (φ=1)27C3^2.8C3^281,13

׿
×
𝔽